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A non-linear neural network model to perform cluster analysis is presented. It pro- 
vides an efficient parallel algorithm for solving this pattern recognition task, consisting, 
from the mathematical point of view, of a combinatorial optimization problem. A new 
classification technique is discussed in order to visualize clustering patterns within a 
molecular set, by means of numerical analysis of the similarity matrix. As an example of 
the application of the reported neural network model, a quantum molecular similarity 

• study in the field of structure-activity relationships is reported. A molecular set made of 
eighteen quinolones is used as an example. The resultant cluster distribution showed a 
good qualitative correlation between similarity data and biological activity. 

1. Introduct ion  

Molecular  similarity measures permit to obtain useful information on the rela- 
t ionships between members  of  any molecular  set. Applications of  molecular  simi- 
larity studies can be found in the field of  structure-activity relationships (SAR) and 
in the related domain of  s t ructure-property relationships (SPR). 

As originally introduced by Carb6  [1-5], the quan tum similarity index is based 
on the compar ison  of  electron density distributions derived from wavefunct ion cal- 
culations and takes the form 

f DADB d V  (1) 

- ( f  D',,dV) ( f  D dV) ' 

where DA and DB are the electron densities o f  the two molecules being compared.  
The Carb6  index is sensitive to the shape of  the molecular  charge distribution and 
contains informat ion on the interrelation between quantum probabil i ty  distribu- 
tions a t tached to molecules of  any molecular  set. This index has been extensively 
used in several structure-relationship studies and the technique has since been 
extended to cover electrostatic potentials and shape [6,7]. 
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Once a set of molecules M = {MI} to be compared by means of the similarity 
index has been chosen and a numerical representation of this molecular set has been 
stored in the similarity matrix R, one can apply a large variety of numerical analysis 
and visualization techniques in order to analyze similarity computat ional  results 
[8]. Similarity matrices provide a finite m-dimensional coordinate vector represen- 
tation for the molecular set, where m is the cardinality of the set M. Simultaneous 
visualization of all the molecules can be achieved through a projection into some 
two-dimensional space. Neural networks have been used [7] to solve the dimension- 
ality reduction problem. 

The extraction of information from the similarity matrix R can also be achieved 
by inducing a certain order in the set M, which can have interesting connections 
with the properties of the compared set. If P -- {Pt} is the set of properties of the 
elements of M and D = {Dr} the set of known density functions, then the elements 
of the sets M, D, P are forced to be in a one-to-one correspondence. Molecular simi- 
larity representations permit to order the elements of function set D; hence the sets 
M and P can be considered ordered by induction using the above correspondence. 
To order the set D, it is only necessary to agree on a predefined rule [4]. The classifi- 
cation of the clustering pattern's appearance within a known molecular set using 
the information stored in the similarity matrix can be used as the ordering rule. In 
this work, a neural network model to solve this cluster analysis problem from 
molecular similarity matrices is presented. This approach permits us to obtain clus- 
ter distributions of  the studied molecules for different levels of similarity, without 
defining "a priori" the number of clusters. 

Cluster analysis is a main task in unsupervised pattern recognition and it is 
known to be a combinatorial optimization problem (COP) [9-11]. In this work we 
introduce a non-linear neural network (NN) to solve it. This approach is inspired 
by the idea that artificial non-linear neural networks have the capability of solving 
optimization problems by the best-known algorithms and methods if they exist 
[12,13]. The introduced NN is described by a non-linear autonomous  system of dif- 
ferential equations [14]. This system has an associated Liapunov energy function 
that is a sum of indefinite quadratic forms. Perturbed similarity matrices are used 
as matrices of energy functions. The solution of the system of differential equations 
corresponds to the NN solutions for the discussed cluster analysis problem. 

The methodology was tested using a family of eighteen antibacterial quinolones. 
The resultant pattern recognition analysis of the studied molecular set has origi- 
nated a clustering of compounds according to their biological activity. 

2. Neural  network to perform cluster analysis from molecular similarity 
matrices 

The cluster analysis used here places each pattern found in a given collection in 
one or several clusters, yielding the class (cluster) distribution of  the pattern collec- 
tion, so that: 
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1. the cluster number  must  be minimum, 

2. the similarity between the patterns must  be minimal if they are placed at different 
clusters and maximal  if they are placed inside the same cluster, 

3. every pat tern must  be placed at least at one cluster. 

In some sense, this task is similar to the map-colorabili ty problem [7], which con- 
sists of  coloring the regions of  a map in such a way that two adjacent regions do not  
have the same color and the number  of  colors must  be minimal. Taking this into 
account  we introduced a non-linear neural  network to solve the cluster analysis 
task. This model  is a modification of  the N N  proposed by Takefuji [ 13], in order to 
solve the map-colorabil i ty problem. 

A N N  with m 2 neurons was considered, where m is the pat tern number  of  the 
studied collection. Each neuron is connected with the rest. The differential equation 
system expressing the state of  the network at the time t is 

dxij _ A ~ ( r j k  - q)Yik + B (Ykj - 1) + Chj(ylj, ,Ymj) 
k;) = (2) 

Yij = f ( x , j ) ,  i , j  = 1 ,m.  

In this system R = (rift is the similarity matrix of  the studied set of  molecules, q is 
a similarity level, hence q is a function of  the R matrix elements. For  example, q can 
be taken as the average of  the elements of  the R matrix or the mean  value between 
the max imum and the min imum similarity values. The value ofy/j is the state of  the 
0'th neuron at a determined time; Yij = 1 if t he j th  molecule is placed at the ith clus- 
ter and y/j = 0 otherwise. The func t ionf (x0)  is the transfer function of  the neural  
network.  In this model  the Takefuji max imum transfer function was used: 

1 if xti = max{x l i , . . . ,  Xmi}, 
f ( x t i )  = 0 otherwise,  (3) 

but  the following functions can also be implemented: 

- Sigrnoid f ( x i )  = ½(1 + tanh(xi)) ,  (4) 

1 if xi>>.O, 
- McCulloch-Pit ts  f ( x i )  = 0 otherwise.  (5) 

In the differential equations (2) the first term guarantees that  intra-cluster simi- 
larities would be large and inter-cluster ones would be small. This fact is better 
explained in the corresponding term of  the energy function. The second term 
restricts clusters or classes to be disjoint. The third term allows the state of  the sys- 
tem to escape f rom the local min imum and to converge to a global minimum. This 
last term is the hill-climbing term and consists of  the following discrete two-valued 
function: 
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I m 
h j ( y l ] , .  ,Ymj)  = L if E Y k j  = O, 

"" k=l (6) 
0 otherwise , 

where L is a real positive number. This term guarantees that every pattern must  
be placed at least in one cluster. Each term is modulated by the non-negative con- 
stants A, B, C. 

The Liapunov energy function associated with the system (2) is 

- Y i j -  1) 2 (7) = ----  (rjk --q)YikYij 2 j = l  i=1 " 
2 i=1 j = l  k=l 

k~j 

The first term in the above function is closer to a min imum i f yUYik  ---- 1 and rjk > q 
(the similarity value between moleculesj  and k is greater than a certain threshold). 
This means that the objectsj  and k are placed at the same cluster. When rjk < q, the 
min imum value is reached for YijY~k = 0. This means that objectsj  and k belong to 
different classes. So, in the global min imum of the energy function, the fact that 
intra-cluster similarities are large and inter-cluster are small is guaranteed. Hence, 
the problem of cluster analysis in this model is reduced to a combinatorial  optimi- 
zation problem of  the function E over the set Y = {yo, Yij = O, 1, i , j  = 1, m } .  

The first term of  the energy function can be written as 

E1 2 m~l Ei A m.~. I YT ~V y = = , ,  ( 8 )  

where W,,xm = ( Wjk ) = ( q -- rkj)(1 -- & j )  and~i = (Yix, . . ., Yi, ,);  6kj is the Kronecker 
delta. 

Therefore, in the case of  B ¢ 0 (disjoint cluster distribution), the optimization 
problem can be written as the following constrained quadratic 0-1 programming 
problem, which is known to be NP-hard [ 14]: 

A ~ = I - T  - min E 1 = -- Yi Wyi ,  
y,,e ~ 2 

= ) i  = ( Y i l , . . . , Y i ~ ) ; Y i j  E Y;  Ykj = 1, j = 1 , m  . 
k=l  

( 9 )  

The quadratic form Ei in eq. (8) is the energy function for the ith cluster. If  the 
similarity matrix R is positive definite and q = 0, the matrix W is negative definite. 
Hence the min imum value of  function Ei is reached when all the molecules gather in 
the cluster i, and due to that, for the constraints: yi E Y, the rest of  the terms fullfil 
Ej = 0 for all j  ¢ i. This is the same as to say that for a very low level of  similarity all 
the molecules belong to the same class. On the other hand, for the values of  q such 
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that W becomes positive definite, a cluster distribution occurs with one single 
object  in each class. Then, when the similarity matrix is positive definite, the num- 
ber of  clusters increases with the increment of  q, as well as the number  of  molecules 
per cluster decreases. 

3. A p p l i c a t i o n  to  a s t ruc tu re -ac t iv i ty  re la t ionsh ip  study 

3.1. CALCULATION OF THE SIMILARITY MATRIX 

A family of  eighteen antibacterial quinolones has been chosen to illustrate the 
applicat ion of  the previously described N N  model  to solve the cluster analysis 
problem based on quantum similarity measures. The compounds ,  ordered accord- 
ing to their biological activity values [15], are listed in Table 1. The minimum energy 
conformat ions  and density functions of  molecules were obtained using AM1 
M O P A C  calculations [16]. The resultant structures were superimposed~ by a least 
squares fit of  the carbon atoms marked  with numbers  3, 4, 5, 10 and 12 [15]. 

The quan tum similarity matrix was calculated analytically using the Carb6  simi- 
larity index (1). First-order density functions in the L C A O - M O  framework can be 
easily writ ten as 

Table 1 
Compounds and biological activities of the quinolone set. 

No. Compounds a Biological activity b 

1 nalidixico (2b) 4.57 
2 (lh) 4.68 
3 (2c) 4.91 
4 (l j) 4.93 
5 (2d) 4.99 
6 (lk) 5.28 
7 (li) 5.79 
8 norfloxacin (1 a) 6.50 
9 enoxacin (2a) 6.51 

10 pefloxacin (1 e) 6.52 
11 8F-norfloxacin (1 g) 6.53 
12 8 F-pefloxacin (1 f) 6.55 
13 ofloxacin (11) 6.56 
14 fleroxacin (ld) 6.57 
15 temafloxacin (1 t) 6.92 
16 ciprofloxacin (1 b) 7.12 
17 amifloxacin (1 c) 7.13 
18 tosufloxacin (2h) 8.00 

a Quinolone antibacterial agent derivative. 1: quinolone derivatives and 2: naphthyridine derivates. 
b Biological activity expressed as log(1/molar MIC), where MIC is the minimum inhibitory concen- 

tration against E. coli H650. Compounds and activity data were taken from ref. [13]. 
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D(~) = Z Z D~vXuXv, (10) 

where Duv is the first-order density matrix, as obtained from the output of 
MOPAC program, and Xu, Xv are the AO's. In the calculation of the Carb6 index, 
some kind of overlap integrals emerges involving four atomic orbitals which, in the 
worst situation, are centered on four different atomic sites. This kind of integrals 
has usually been computed employing a CNDO-like approach [1]. Using this idea, 
the overlap quantum similarity measure can be written as follows: 

a' b 

where the sum is performed over all the atoms of molecules I and J. Q is the 
Mulliken gross atomic population and the function S in the Slater s-type orbital 
centered at each atomic nucleus [2]. The integrals involved in eq. (11) are then easily 
computed [17]. This approach allows a rapid analytical integral evaluation, greatly 
enhancing the speed of similarity calculations. 

3.2. C O M P U T A T I O N A L  EXPERIMENT 

The N N  differential equation system (2) was solved using the quantum similarity 
matrix R. Cluster analysis was performed for q equal to each different element 
(similarity level) of the similarity matrix, taken in increasing order. This means sol- 
ving m(m - 1)/2 differential systems in the worst case, where m is the number  of 
molecules in the set. The solution was updated for every different performance of 
the clustering pattern. As the transfer function, the "Takefuji maximum" function 
was used, as given in eq. (3). In this case, the constant B = 0 was fixed because this 
function determines implicitly a disjunction of classes or clusters. The other system 
constants were fixed equal to unity. Computational solution of the differential 
equation system was performed using the first order Euler method, which is the 
simplest among the existing numerical methods. In order to solve the system (2) for 
each value of q, the initial values of xij(t = 0) were randomly generated and the 
solution was iteratively updated until the system state reaches the equilibrium. The 
artificial neural network provides a parallel gradient descent method to minimize 
the energy function (7). Since a parallel machine was not available, a simulation of 
parallel computing model using a sequential machine was performed [13]. All cal- 
culations were carried out on a PC-486 DX2 66 MHz. 

The effectiveness of the method for each similarity level was evaluated by using 
clusters for simulated property prediction and then comparing the observed and 
predicted property values [18]. Given a molecules I in a cluster J, the predicted 
property value for 1can be estimated as the mean of property values for all the other 
structures in the cluster J. This value is calculated for each of the m compounds in a 
studied set, but sensible results will be obtained only for those molecules that occur 
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in a cluster containing at least three molecules. The correlation between the sets of 
observed (x) and predicted (y) values were calculated by means of the product 
moment correlation coefficient (PMCC). This is given by the expression 

PMCC = ~ ( x  - 2)(y - ~) (12) 
V/ (x _ 2)2 _ y )2 '  

where 2 and ~ are the means of the observed and predicted values and summations 
are defined over all of the molecules occurring in clusters containing at least three 
members. 

3.3. RESULTS 

The cluster distribution of molecules for each similarity level is given in Fig. 1. 
The N N  pattern recognition technique, for all the different values of q, gave an 
excellent clustering for most of the eighteen studied compounds, sit can be 
observed that active molecules belonging to the same activity class gather in the 
same cluster. For several values of q the method fails in the classification of com- 
pounds 5, 16 and 17, which are grouped with molecules that have activities not 
too close to their values. It seems to be due to the fact that the molecules are struc- 
turally very similar, although their activity is very different. Actually, molecules 1 
and 5, for example, are different only by one atom in the position number 8 [15], 
but this difference does not vary very much the value of the similarity index. For 
all other compounds, clusters contain molecules with very close biological activity 
values. 

For each value of q an individual partition of a set was obtained. By performing 
calculations for each different similarity value in increasing order, a classification 
in a top-down manner was obtained (Fig. 1). With minor oscillations when the simi- 
larity values were too close, a hierarchical divisive clustering was obtained. For the 
values of q near to the minimal element of the similarity matrix, all the compounds 
belong to the same cluster. The number of clusters increases with the increment of 
q, keeping the order according to biological activity values for most of the com- 
pounds. For the values very close to the maximal element of the similarity matrix, 
each cluster contains exactly one compound. 

With this procedure, an order in a set of studied molecules is created using com- 
puted density functions, and by induction, the set of attached properties (in this 
case biological activity) is also ordered. Therefore, one has the possibility of intro- 
ducing into the set of molecules a new element, which has a known computed den- 
sity function, but with an unknown property value. Therefore, the similarity index 
for the new compound could be computed, and the new similarity matrix could be 
also qualitatively analyzed using this N N  classification algorithm. If the introduc- 
tion of the new element does not alter the obtained order, the relative value of the 
unknown property can be estimated. 



392 R. Cruz et al. / Cluster analysis 

0463 I , 2 3 ,  ~ 67 8 9 , 0 , ,  ,2 ,3 ,4 ,5 ,6 ,7 ,8 I 

i ! 
I 

0.637 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 

I 
0.665 [ 1 2 3 4 5 6 7 8 9 10 !1 12 13 16 17 

I I 
0.694 I II 3 4 6 7 8 9 1 0 1 1 1 2 1 3 1 6 1 7  

I I I 
0 ~  I II 3 4 6 7 1 0 1 1 1 2 1 3  II 8 9 1 6 1 7  

I I I 
0.793 [ 125  I ] 3 4 6 7  10 II 11 12 13 I1 89 16 17 

I I I I I 

1 2 5  

1 2 5  

I 

0.816 I 1 112 511 3 4 6 7 10 II 11 12 13 II 8 9 16 17 

0.856 I 1 112 511 3 4 6 7 II 1011 11 12 13 
I 

8 9 16 17 

0,873 | 1 112511 3 4 6 7  111011 11 12 II 13 II 8 9 16 

0.894 I 1 112 511 3 4 7 11611 1011 11 12 II 13 II 8 9 16 

Fig.  1. C l u s t e r  d i s t r i b u t i o n  o f  c o m p o u n d s  a t  d i f f e ren t  levels o f  s imi la r i ty .  

The PMCC results for each similarity level are listed in Table 2. For  the first four 
levels, the PMCC results gave a perfect inverse correlation. This is due to the calcu- 
lation procedure of predicted properties described above (these values are ranked 
in an inverse order), and to the fact that there is only one cluster with more than one 
member.  For  similarity levels with PMCC greater than 0.75, there is a good agree- 
ment  between the predicted and observed activity values in clusters with more than 
two members. This fact can be used for the relative estimation of  the activity value 
for a new molecule with known electronic density and unknown property. In this 
case, we can perform cluster analysis with the new similarity matrix at this similar- 
ity level and, depending on the cluster the new element belongs to, we can estimate 
the predicted value of  the activity. 
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Table 2 
PMCC values for neural network clustering at different levels of similarity. 

393 

q PMCC NC a NCC b 

0.463 - 1.0 1 1 
0.592 - 1.0 2 1 
0.637 -1.0 3 1 
0.665 -1.0 4 1 
0.694 0.477 5 2 
0.732 0.573 6 3 
0.793 0.759 7 4 
0.816 0.825 8 3 
0.856 0.837 9 3 
0.873 0.808 11 2 
0.894 0.707 12 2 

a Number of clusters. 
b Number of clusters with more than two elements. 

4. C o n c l u s i o n s  

A global solution of  the combinatorial  pat tern recognition problem (cluster anal- 
ysis) is obta ined using a non-linear neural network model.  Due  to the model  charac- 
teristics, a parallel computat ional  implementation would  be very efficient. 
Nevertheless,  numerical  computat ional  experiments in sequential machines have 
shown a good performance too. 

The molecular  similarity study shows the advantage of  the used non-linear N N  
to perform cluster analysis. The reported classification technique was applied to a 
SAR study using the Carb6  quantum similarity index, and showed a good qualita- 
tive correlat ion between clustering patterns and biological activity for the quino- 
lone set used. 

This model  can be helpful in extracting information from similarity matrices 
and provides an alternative method to visualize the relationships and clustering 
pat terns  within the molecular  set. Since numerical analysis of  similarity data  with 
this model  is very efficient and can be applied to general matrix structures com- 
puted  using different similarity measures and indices, the presented model  provides 
a tool for SAR and SPR studies. 
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